EMERGY SYNTHESIS:
Theory and Applications of the Emergy Methodology

Proceedings from the First Biennial Emergy Analysis Research Conference,

Edited by
Mark T. Brown
University of Florida
Gainesville, Florida

Associate Editors
Sherry Brandt-Williams
Rookery Bay National Estuarine Research Reserve
Naples, Florida

David Tilley
Texas A&M University
Kingsville, Texas

Sergio Ulgiati
University of Siena
Siena, Italy

December, 2000

The Center for Environmental Policy
Department of Environmental Engineering Sciences
University of Florida
Gainesville, FL
Simulating Emergy and Materials in Hierarchical Steps

Howard T. Odum

ABSTRACT
Understanding the self organization of systems of nature and environment requires synthesis of several principles for the hierarchy of territories, energy transformations, the coupling of material cycles, the formation of centers, and the concentration of emergy and matter. These relationships were combined in a BASIC computer program HIERSTEP.bas that simulates the properties of hierarchical steps of a system in steady state, each level calculated from inputs from the next lower, less concentrated level. Simulations are useful for controlled experimentation on the effects of changes on hierarchical characteristics. Results are either printed as numbers or plotted as heights on a bar graph on logarithmic vertical scale. The output plot shows steps increasing or decreasing with hierarchical level from left to right. Parameters calculated for each level in the hierarchy include: area of territory, number of centers, area of centers, area of each center, energy flow, empower, coupled material flow, areal empower density, areal mass flux density, transformity of flow, emergy per gram of flow, storage turnover times, emergy stored, and matter stored. Questions raised by this exercise are used to discuss hypotheses for the organization of ecosystems, landscapes, and economies. The process of combining the relationships into one program identifies parameters that need to be evaluated in real systems. For example, a material-energy function relates the amount of a material cycle that is coupled to available energy in a transformation as a function of the level in energy hierarchy.

INTRODUCTION
Study of the hierarchy of nature has a long history with many approaches and concepts (Allen and Starr, 1982; Clarke, 1946; Mandelbrot, 1982; Margalef, 1958; Mesarovic et al., 1970; Odum, 1982; Patee, 1973; Steele, 1976; Weiss, 1971; Whyte and Wilson, 1969; Zipf, 1941), to mention a few. Hierarchy involves the relationship of scales, energy transformations, material concentrations and cycles, spatial organization of territories and centers, controls, system reinforcements, and pulsing impacts. Berry et al. (1976) reviewed the concepts of hierarchy in human settlements that started in the tenth century with later measures proposed by Zipf (1941) and Doxiadis (1977). Emergy and transformity and related indices used to characterize energy and material hierarchies were summarized by this author (1996). In this paper many of these properties are combined into a computer simulation program that relates each to the others, directly or indirectly. Running the program with various changes in parameters and mechanisms is an experimental research tool for understanding the steps of hierarchy. Procedures used in BASIC simulation are given in detail elsewhere (Odum and Odum 2000).

Program Development
The various concepts of energy hierarchy and its coupling to one material cycle are summarized in Table 1. These relationships were combined in a BASIC language computer simulation program (HIERSTEP.bas) that plots bar graphs for each variable in successive levels starting with the values of the
Chapter 10. Simulating Emergy and Materials in Hierarchical Steps

(a) Hierarchical Levels

Each line Marks An Inward and Return Pathway

(b) Centers and Energy Flow

(c) Material Flow

Figure 1. Diagram of four levels of energy hierarchy programmed in the BASIC model HIERSTEP.bas. (a) Spatial sketch of the centers and pathways converging toward centers; (b) energy systems diagram with energy flows transforming, feeding back reinforcement actions, and dispersing; (c) material circulation added to energy systems diagram to show processes of concentration, recycle and dispersal. Shaded symbols represent material storage in a transformation unit.
Chapter 10. Simulating Emergy and Materials in Hierarchical Steps

Table 1
Relationships introduced into the hierarchical steps program HIERSTEP.bas in Table 3
* = new parameters for data evaluation.

Calculations were made with energy flows and materials circulating through the system at a steady state.

Hierarchical level \(L \) was started at 1 and increased by step \(S = 1 \) in calculating the properties of the next level.

Area of a territory at each level \(A \) was calculated for the first level as the total area \((A = 1 \times 10^9) \) divided by the number of territories \((nc = 1000) \). There was one center for each territory. Area of each center \(A_{ec} \) was a set fraction \((Ca = 0.05)* \) and area of all these centers times their number: \(Ac = (A_{ec})(nc) \)

For the next levels the number of territorial centers converging outputs was \((Cr = 6)* \) so that the next level was increased in area with each step by 6 and the number of centers and territories divided by 6.

The area of all the centers at a higher level \(A_c* \) was the fraction \((Sf = 0.3)* \) of the area of all the centers at the lower level. \(Ac = (Sf)(Ac) \).

The number of centers \(nc* \) is the total area divided by the area of each territory at that level. \((nc = A/at) \)

Constant empower \((emp) \) was flowing through the whole area. \((emp = 1 \times 10^{20}) \).

Constant low quality inflowing energy \(Je \) was spread over the whole area.

At each energy transformation sending flow to the next level, fraction of energy transformed was the efficiency \((Eff = 0.1) \).

Transformity of the flows was the empower \((emp) \) divided by the energy flow \((Je) \).

The total mass of a material \(M* \) at the low level was spread over the whole area \((M = 1 \times 10^7) \).

Flow of the mass from the background level was coupled to the flow of energy \(Je \) according to the ratio \(me \) and \(Jm = (me)(Je) \). But the coupling \(me* \) was increased with the level changing with the coefficient \(fmC \) and level \(L \). Thus, \(me = (me)(fmC)(L) \). These properties represent the tendencies of different materials to be coupled to available energy transformations according to their quality.

Empower density is the empower divided by the area of centers at that level. \((empd = emp/ac) \)

Energy per mass for the flows is the empower divided by the mass flow \((empg = emp/Jm) \)

The concentration of material flow in centers (material flux density)* is the material flow at a level divided by the area of its centers \((mfd = Jm/ac) \).

Steady state storages were calculated from the flows times the turnover times which increase with scale (level).

Turnover time of the storages in each center \(R \) was increased by a factor \(Rf* \) at the next hierarchical level where \(Rf = 10 \).

Storage of materials is the flow of materials at a level times its time for accumulation (turnover time) and \(ms = (Jm)(R) \).

Storage of emergy is the empower at a level times its turnover time \(ems = (emp)(R) \).

Areal concentration of materials \(mc* \) is the material storage in centers at a level divided by the area of those centers \((mc = ms/ac) \).
Chapter 10. Simulating Emergy and Materials in Hierarchical Steps

Figure 2. Diagrams identifying some parameters and abbreviations used in the program HIERSTEP.bas. (a) Spatial properties; (b) concentration of materials and storing of available energy in a transformation center.

background environment. Figure 1a is a spatial sketch of different levels of territory and territorial centers, each concentrating and transforming flows of energy, empower, and materials which are passed then to the next higher, more concentrated level. Figure 1b is the energy systems diagram of the background and four levels of concentrating. The hierarchical characteristics that were calculated and plotted are listed in Table 2 and some are illustrated in Figure 2. Figure 3 has the bar graphs generated by the computer simulation with the initial calibration.

The process of combining the various relationships, required new attention to the equations for some relationships, forcing some new parameters to be defined. As a general synthesis of concepts, the model identifies measurements (Table 2) that need to be calculated from data of various kinds of systems to further test theories about hierarchical relationships. These parameters, necessarily introduced to make the principles mutually consistent, are marked with *.
Running the model with different numerical values for parameters is an experimental test of their effect on the energy hierarchy and material cycles. The values of the parameters included in the program in Table 3 were those found by trial and error until all the graphs were semi-qualitatively consistent with the definitions and theoretical relationships in Table 1. In other words, ideas of energy systems hierarchy were tested for self-consistency with a synthetic simulation of the change of properties with steps in hierarchical level. This kind of simulation may be a new methodology for investigating systems hierarchy.

Table 2
Parameters for each level used in the program HIERSTEP.bas.
* indicates new properties to measure

<table>
<thead>
<tr>
<th>Geometry and Time:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Whole area</td>
<td></td>
</tr>
<tr>
<td>at Area of a territory</td>
<td></td>
</tr>
<tr>
<td>Ca Fraction that the center occupies in its territory</td>
<td></td>
</tr>
<tr>
<td>ac Area of all the centers at a level</td>
<td></td>
</tr>
<tr>
<td>aec Area of one center at a level</td>
<td></td>
</tr>
<tr>
<td>sf Fraction of area of centers at a lower level occupied by center at the next level*</td>
<td></td>
</tr>
<tr>
<td>nc Number of centers at a level</td>
<td></td>
</tr>
<tr>
<td>N Number of level 1 areas</td>
<td></td>
</tr>
<tr>
<td>Cr Number of centers converging to a center at the next level</td>
<td></td>
</tr>
<tr>
<td>R Replacement time of a center storage</td>
<td></td>
</tr>
<tr>
<td>rf Change in replacement time with hierarchical step*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Je Energy inflow for the whole area</td>
<td></td>
</tr>
<tr>
<td>eff Efficiency of energy transformation in each step</td>
<td></td>
</tr>
<tr>
<td>ens Energy stored in centers at a level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M Total materials</td>
<td></td>
</tr>
<tr>
<td>mc Mass concentration at the low level</td>
<td></td>
</tr>
<tr>
<td>me Materials transformed per unit available energy used (material coupling factor)*</td>
<td></td>
</tr>
<tr>
<td>meo Initial material coupling factor*</td>
<td></td>
</tr>
<tr>
<td>fmc Change in material coupling factor with level*</td>
<td></td>
</tr>
<tr>
<td>ms Mass stored in centers at a level</td>
<td></td>
</tr>
<tr>
<td>mfd Material flux density</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emergy:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>emp Empower for the whole area</td>
<td></td>
</tr>
<tr>
<td>tr Transformity of flows</td>
<td></td>
</tr>
<tr>
<td>empd Areal empower density</td>
<td></td>
</tr>
<tr>
<td>empg Emergy per mass in flows</td>
<td></td>
</tr>
<tr>
<td>enter Empower per territory</td>
<td></td>
</tr>
<tr>
<td>ems Energy stored in centers at a level</td>
<td></td>
</tr>
<tr>
<td>emg Emergy per mass stored</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Properties generated by the program HIERSTEP.bat from the initial conditions assigned in lines 100-360 in Table 3.
Chapter 10. Simulating Emergy and Materials in Hierarchical Steps

Program HIERSTEP. bas

The program HIERSTEP.bas, with its statements, is listed in Table 3. The first part of the program (lines 10-350) has the initial conditions of the lowest level of hierarchy and scaling factors. There is one plot statement in line 420 plotting a variable Y (to be selected for each run) as a function of the level L. The lines 430-450 plot a bar according to the value of Y at the first level. Then the program steps to the next level (line 500) and reevaluates the variables (lines 510-700), returning on line 710 to the plot statement where the next bar is plotted, and so on until there is only one hierarchical center remaining. Then, with line 700, the program goes to the END in line 800.

The user types in the item to be plotted on the Y axis in the parenthesis in line 410. To represent the wide range of magnitudes in the different levels of hierarchy, plots are on logarithmic scale. In order to keep each item on the screen, screen factors were added by giving various plus or minus values to YO, which causes the plot to shift up or down on the screen. Graphical outputs from 12 different runs were

Table 3
Listing of the BASIC program HIERSTEP.bas.
Load a form of basic such as QBASIC. Use its menu to open the program. Type in a property to be graphed in the parenthesis of Line 410 (example: (tr) to plot transformity. Use menu to select RUN. Or, print out values of a variable such as tr for levels by adding the following line: 402 PRINT tr: GOTO 500.

```
10 REM PC: HIERSTEP.bas (Properties of hierarchical steps)
15 CLS
20 SCREEN 1,0
30 COLOR 7,0
40 LINE (0, 0)-(200, 180), 3, B
45 S = I: REM Step = 1
50 L = 1: REM Start at level #1
80 REM Scaling Factors
83 DZ = I: REM increment FOR counting bar WIDTH plot
84 DX = 1: REM Horizontal increment FOR plotting bar
86 XO = 1: REM Factor for scaling horizontal axis
90 YO = 10: REM Factor for scaling vertical axis
100 REM First Level conditions and relationships
102 emp = 1E+20: REM Empower sej/time of the whole area A
105 M = 1E+07: REM Materials in lowest level
110 N = 1000: REM number of level 1 units and territories
112 Jeo = 1E+20: REM Initial energy flow of the whole area
113 Je = Jeo: REM energy flow
114 eff = .1: REM fraction of energy transformed in each step
115 R = 1: REM initial replacement time
116 RF = 10: REM factor changing replacement time with level
117 tr = emp/Je: REM initial transformity of energy flow of small areas
118 A = 1E+09: REM Whole area
119 mc = M/A: REM Mass concentration at the low level
120 at = A/N: REM area of each small territory
200 Ca = .05: REM Center fraction of territory area
210 aec = Ca*at: REM Area of each center
220 Sf = .3: REM area factor change per step
```

-125-
Chapter 10. Simulating Emergy and Materials in Hierarchical Steps

Table 3 HIERSTEPbas (continued)

230 \text{empd} = \text{emp/A:REM empower density of whole area}
240 \text{fmc} = 2:REM factor changing material/energy coupling with level
250 \text{meo} = 1E-13:REM material coupling to energy flow
260 \text{Jm} = \text{meo*mc*Je:REM flow of materials at the first level}
270 \text{ms} = \text{Jm*R:REM Mass stored}
280 \text{empg} = \text{emp/Jm:REM emergy/mass in flows}
290 \text{Cr} = 6:REM Number of centers converging to higher level center
300 \text{nc} = N:REM number of first level centers = number of territories
310 \text{ac} = \text{aecn:REM area of the centers on the first level}
320 \text{mfld} = \text{Jm/ac:REM material flux density in centers of the first level}
330 \text{enter} = \text{emp/nc:REM empower per territory}
340 \text{ems} = 1:REM emergy stored in background level
350 \text{emg} = \text{empg/ms:REM emergy per mass stored}
360 \text{me} = \text{Jm/Je:REM materials transformed per unit energy, first level}
400 \text{REM Start of bar plotting or value printing Loop}
410 \text{Y} = 10^*\text{LOG(empd)/2.3} 1: \text{REM Substitute variable here to be plotted}
415 \text{Y0} = 10
420 \text{PSET (XlX0, 180 - (Y - Y0)), 3: REM Plotting whatever is in Line 410}
430 \text{Z} = \text{Z + DZ:REM bar width counter}
440 \text{X} = \text{X + DX}
450 \text{IF Z < 50 GOTO 400: REM}
460 \text{Z} = 1
500 \text{L} = \text{L + S:REM steps program to next energy transformation level}
505 \text{me} = \text{fmc*L*me:REM changed material/energy flow coupling}
507 \text{emp} = \text{emp:REM empower transfer}
510 \text{Je} = \text{Je*eff}
520 \text{Jm} = \text{me*Je:REM flow of materials at this level}
530 \text{at} = \text{at*Cr:REM area of each territory}
550 \text{tr} = \text{emp/Je}
560 \text{R} = \text{R*Rf:REM replacement time for this level}
570 \text{nc} = \text{A/at:REM Number of centers}
580 \text{ac} = \text{ac*Sf:REM Area of centers}
590 \text{aecn} = \text{ac/nc:REM Area of each center}
600 \text{empd} = \text{emp/ac:REM empower density of centers}
610 \text{empg} = \text{emp/Jm:REM empower per mass flowing}
620 \text{mfld} = \text{Jm/ac:REM material flux density in centers}
625 \text{efld} = \text{Je/ac:REM energy flux density in centers}
630 \text{ms} = \text{Jm*R:REM Mass stored at the level}
640 \text{enter=} = \text{emp/nc:REM empower per territory}
650 \text{mc} = \text{ms/ac:REM mass concentration}
660 \text{ems} = \text{emp*R:REM emergy stored at the level}
670 \text{emg} = \text{ems/ms:REM emergy per mass stored}
680 \text{ens} = \text{Je/R:REM energy stored}
700 \text{IF nc < 1 GOTO 800}
710 \text{IF X < 320 GOTO 400}
800 END
assembled in Figure 2. Each was obtained by changing what was plotted in line 410 and its screen shifting factor in line 415. For example, to plot transformity of the flow for each level, type tr in line 410:

\[Y = 5 \times \log(Tr) \]

where 5 is a scaling factor for graphical presentation and Y0 is 10 shifting the plot up on the screen. When evaluated from real examples, the model is another way to generate hierarchical characteristics such as transformities, empower densities, emergy per mass values plus the new parameters whose meaning may require more investigation.

REFERENCES

